Online Courses and Tutorials

Onlinecourses.tech provides you with the latest online courses information by assisting over 45,000 courses and 1 million students.

Learn programming, marketing, data science and more.

Get started today

Skip to main content

Featured Post

Machine Learning

Master machine learning fundamentals in four hands-on courses

About This Specialization This Specialization from leading researchers at the University of Washington introduces you to the exciting, high-demand field of Machine Learning. Through a series of practical case studies, you will gain applied experience in major areas of Machine Learning including Prediction, Classification, Clustering, and Information Retrieval. You will learn to analyze large and complex datasets, create systems that adapt and improve over time, and build intelligent applications that can make predictions from data. Created by: Industry Partners: 4 courses Follow the suggested order or choose your own. Projects Designed to help you practice and apply the skills you learn. Certificates Highlight your new skills on your resume or

Recolección y exploración de datos

Recolección y exploración de datos

About this course: Organizaciones tan diferentes como Amazon, Cemex o Costco utilizan el análisis de datos para una mejor toma de decisiones que les permita identificar a sus clientes más rentables, retener y contratar talento o bien optimizar sus cadenas de suministro. Lo cierto es que las organizaciones compiten ahora tomando decisiones basadas en la explotación de los datos y uso de métodos estadísticos. Sin embargo, la forma en que estos datos se obtienen, manipulan y utilizan, puede definir el fracaso o el éxito de estas organizaciones. El primer paso antes de convertir estos datos en información que agregue valor a la organización es recolectar y limpiar dichos datos. En este curso podrás reconocer y recolectar los tipos de datos disponibles de manera estructurada y no estructurada en el mundo de negocios actual, así como preparar, aplicar y limpiar estos datos para su posterior explotación. Adicionalmente, serás capaz de realizar una exploración de los datos que te permita elaborar un análisis preliminar del proceso de negocio bajo estudio. Al terminar este curso habrás desarrollado la capacidad de comprender y aplicar de manera efectiva las metodologías y técnicas relacionadas con la recopilación de datos, utilizando un software de última generación, como el Watson Analytics. Agradecemos a Fundación Televisa por su participación en la producción de este curso; con lo cual colabora a inspirar y desarrollar el potencial de las personas, a través de su compromiso con la educación y la cultura.

Created by:  Tecnológico de Monterrey

Basic Info
Commitment4 semanas de estudio, 3-5 horas por semana
Language
Spanish
How To PassPass all graded assignments to complete the course.
User Ratings
Average User Rating 4.3See what learners said
Syllabus
WEEK 1
El reto de tomar mejores decisiones
En este módulo, comprende la parte teórica del curso, examinarás cómo en este nuevo entorno de negocios las organizaciones utilizan el análisis de datos para competir y obtener una ventaja competitiva. Identificarás los tipos de datos y sus características a efecto que reconozcas el nivel de madurez de la organización (con respecto al uso de datos).
6 videos9 readings
  1. Video: Bienvenida
  2. Reading: ¿Qué puedo esperar de este curso?
  3. Video: Las innovaciones del siglo XXI
  4. Video: ¿Cómo registrarse y crear una cuenta en Watson Analytics? (Exploración inicial)
  5. Reading: Metodología
  6. Reading: ¿Cómo hacer uso de un Peer Review?
  7. Reading: ¿Cómo utilizar los Foros de discusión?
  8. Reading: Encuesta de inicio
  9. Reading: Preguntas frecuentes
  10. Reading: Uno de los activos más valiosos de la empresa
  11. Video: Calidad de los datos
  12. Reading: ¿Qué preguntas responde el análisis de datos?
  13. Video: Delta se usa para cambio
  14. Reading: El Delta Analítico de Davenport
  15. Video: ¿Cuándo es adecuado utilizar datos para la toma decisiones?
Graded: Evaluación Módulo 1
WEEK 2
Recopilación de datos
En este módulo conocerás más sobre los datos y el valor de los mismos. Explorarás el uso de la herramienta computacional de Watson Analytics para la recolección de datos que te permitirá importar datos estructurados y realizar un análisis descriptivo de los mismos.
3 videos4 readings2 practice quizzes
  1. Video: Respondiendo a los problemas de negocio
  2. Reading: El valor cambiante de la información
  3. Reading: El proceso ETL
  4. Video: Importando datos estructurados a Watson Analytics
  5. Reading: Archivos para práctica en Watson Analytics
  6. Practice Quiz: Quiz Práctico
  7. Video: En busca de la felicidad
  8. Reading: Archivo de práctica
  9. Practice Quiz: Quiz Práctico
Graded: Evaluación Módulo 2
WEEK 3
Un mundo de datos no ordenados
En este módulo aprenderás el manejo de datos no estructurados utilizando la herramienta computacional Import-io para la lectura de datos de algún sitio web, así como la importación a Watson Analytics de datos de Twitter. Este módulo comprende la parte práctica del curso, por lo que al final del mismo deberás resolver un caso práctico utilizando las dos herramientas antes descritas.
6 videos1 reading
  1. Video: ¿Por qué las empresas se deben preocupar por los datos no estructurados?
  2. Video: Importando datos no estructurados con import-io e integración a Watson Analytics. Parte 1.
  3. Video: Importando datos no estructurados con import-io e integración a Watson Analytics. Parte 2.
  4. Reading: Archivos para práctica en Watson Analytics
  5. Video: ¿Qué dicen los clientes de mi empresa?
  6. Video: Datos de Twitter usando Watson Analytics
  7. Video: Caso: La NFL
Graded: Ejercicio de Datos No Estructurados utilizando import.io
Graded: Revisión de ejercicio Twitter
Graded: Ejercicio de Datos No Estructurados, la NFL.
Graded: Evaluación Módulo 3
WEEK 4
Exploración de datos
Al finalizar este módulo serás capaz de explorar los datos utilizando las capacidades de visualización de la herramienta Watson Analytics. De la misma manera, aprenderás a encontrar patrones y relaciones en los datos que representan respuestas a problemas de negocio.
3 videos5 readings2 practice quizzes
  1. Video: Obteniendo información descriptiva y visualizando datos utilizando Watson Analytics
  2. Reading: Archivos para práctica en Watson Analytics
  3. Reading: La importancia de comunicar visualmente los datos
  4. Practice Quiz: Quiz Práctico
  5. Video: Las Grandes Ligas
  6. Reading: Archivos para práctica en Watson Analytics
  7. Reading: Modelación de datos utilizando técnicas estadísticas
  8. Practice Quiz: Quiz Práctico
  9. Video: Resumen de lo aprendido
  10. Reading: Encuesta de cierre
Graded: Evaluación Módulo 4
How It Works
Coursework
Coursework
Each course is like an interactive textbook, featuring pre-recorded videos, quizzes and projects.
Help from Your Peers
Help from Your Peers
Connect with thousands of other learners and debate ideas, discuss course material, and get help mastering concepts.
Certificates
Certificates
Earn official recognition for your work, and share your success with friends, colleagues, and employers.
Creators
Tecnológico de Monterrey
Tecnológico de Monterrey es una de las instituciones educativas privadas sin fines de lucro más grande en Latinoamérica, con más de 98,000 estudiantes en preparatoria, licenciatura, y posgrado.
Learn more about this course

Comments

Popular posts from this blog

Hands-on Text Mining and Analytics by Yonsei University

About this course: This course provides an unique opportunity for you to learn key components of text mining and analytics aided by the real world datasets and the text mining toolkit written in Java. Hands-on experience in core text mining techniques including text preprocessing, sentiment analysis, and topic modeling help learners be trained to be a competent data scientists. Empowered by bringing lecture notes together with lab sessions based on the y-TextMiner toolkit developed for the class, learners will be able to develop interesting text mining applications.



LevelIntermediateLanguage English, Subtitles: Chinese (Simplified) How To PassPass all graded assignments to complete the course.
Syllabus

Big Data Hadoop Certification Training

Big Data Hadoop training will make you an expert in HDFS, MapReduce, Hbase, Hive, Pig, Yarn, Oozie, Flume and Sqoop using real-time use cases on Retail, Social Media, Aviation, Tourism, Finance domain. You will get Hadoop certification at the end of the course

About the Training
This Hadoop training is designed to make you a certified Big Data practitioner by providing you rich hands-on training on Hadoop ecosystem and best practices about HDFS, MapReduce, HBase, Hive, Pig, Oozie, Sqoop. This course is stepping stone to your Big Data journey and you will get the opportunity to work on a Big data Analytics project after selecting a data-set of your choice. You will get Hadoop certification after the project completion.

Training Objectives
The hadoop training is designed to help you become a top Hadoop developer. During this course, our expert instructors will train you to: Master the concepts of HDFS and MapReduce frameworkUnderstand Hadoop 2.x ArchitectureSetup Hadoop Cluster and write Co…

Learn to Program and Analyze Data with Python

About This Specialization This Specialization builds on the success of the Python for Everybody course and will introduce fundamental programming concepts including data structures, networked application program interfaces, and databases, using the Python programming language. In the Capstone Project, you’ll use the technologies learned throughout the Specialization to design and create your own applications for data retrieval, processing, and visualization. Created by: 5 courses Follow the suggested order or choose your own. Projects Designed to help you practice and apply the skills you learn. Certificates Highlight your new skills on your resume or LinkedIn. Courses

An Introduction to Interactive Programming in Python (Part 1)

About this course: This two-part course is designed to help students with very little or no computing background learn the basics of building simple interactive applications. Our language of choice, Python, is an easy-to learn, high-level computer language that is used in many of the computational courses offered on Coursera. To make learning Python easy, we have developed a new browser-based programming environment that makes developing interactive applications in Python simple. These applications will involve windows whose contents are graphical and respond to buttons, the keyboard and the mouse. In part 1 of this course, we will introduce the basic elements of programming (such as expressions, conditionals, and functions) and then use these elements to create simple interactive applications such as a digital stopwatch. Part 1 of this class will culminate in building a version of the classic arcade game "Pong".
Who is this class for: Recommended Background - A knowledge o…

Front-End JavaScript Frameworks: Angular

About this course: This course concentrates mainly on Javascript based front-end frameworks, and in particular the Angular framework (Currently Ver. 4.x). This course will use Typescript for developing Angular application. Typescript features will be introduced in the context of Angular as part of the exercises. You will also get an introduction to the use of Angular Material and Angular Flex-Layout for responsive UI design. You will be introduced to various aspects of Angular including components, directives and services. You will learn about data binding, Angular router and its use for developing single-page applications. You will also learn about designing both template-driven forms and reactive forms. A quick introduction to Observables, reactive programming and RxJS in the context of Angular is included. You will then learn about Angular support for client-server communication and the use of REST API on the server side. You will use Restangular for communicating with a server sup…

Launch Your Career in Data Science

A nine-course introduction to data science, developed and taught by leading professors.
About This Specialization Ask the right questions, manipulate data sets, and create visualizations to communicate results. This Specialization covers the concepts and tools you'll need throughout the entire data science pipeline, from asking the right kinds of questions to making inferences and publishing results. In the final Capstone Project, you’ll apply the skills learned by building a data product using real-world data. At completion, students will have a portfolio demonstrating their mastery of the material. Created by: Industry Partners: 10 courses Follow the suggested order or choose your own. Projects Designed to help you practice and apply the skills you learn.

Программирование на Python

About this course: Python – простой, гибкий и невероятно популярный язык, который используется практически во всех областях современной разработки. С его помощью можно создавать веб-приложения, писать игры, заниматься анализом данных, автоматизировать задачи системного администрирования и многое другое. “Программирование на Python” читают разработчики, применяющие Python в проектах, которыми ежедневно пользуются миллионы людей. Курс покрывает все необходимые для ежедневной работы программиста темы, а также рассказывает про многие особенности языка, которые часто опускают при его изучении. В ходе курса вы изучите конструкции языка, типы и структуры данных, функции, научитесь применять объектно-ориентированное и функциональное программирование, узнаете про особенности реализации Python, научитесь писать асинхронный и многопоточный код. Помимо теории вас ждут практические задания, которые помогут проверить полученные знания и отточить навыки программирования на Python. После успешного о…

Master of Computer Science in Data Science

A flexible and affordable degree from one of the top Computer Science programs in the world, focused on one of the hottest fields of the new millennium

Enroll in the Master of Computer Science in Data Science (MCS-DS) and gain access to the computational and statistical knowledge needed to turn big data into meaningful insights. Build expertise in four core areas of computer science—data visualization, machine learning, data mining, and cloud computing—while learning key skills in statistics and information science. This completely online degree is an affordable gateway to one of the most lucrative and fastest growing careers of the new millennium. The MCS-DS is offered by CS @ ILLINOIS, a U.S. News & World Report top five CS graduate program, in collaboration with the University’s Statistics Department and top-ranked iSchool. Join our alumni network of entrepreneurs, educators, and technical visionaries, who have revolutionized the way people communicate, shop, conduct business,…

Machine Learning

Master machine learning fundamentals in four hands-on courses

About This Specialization This Specialization from leading researchers at the University of Washington introduces you to the exciting, high-demand field of Machine Learning. Through a series of practical case studies, you will gain applied experience in major areas of Machine Learning including Prediction, Classification, Clustering, and Information Retrieval. You will learn to analyze large and complex datasets, create systems that adapt and improve over time, and build intelligent applications that can make predictions from data. Created by: Industry Partners: 4 courses Follow the suggested order or choose your own. Projects Designed to help you practice and apply the skills you learn. Certificates Highlight your new skills on your resume or

Introduction to Data Science in Python

About this course: This course will introduce the learner to the basics of the python programming environment, including how to download and install python, expected fundamental python programming techniques, and how to find help with python programming questions. The course will also introduce data manipulation and cleaning techniques using the popular python pandas data science library and introduce the abstraction of the DataFrame as the central data structure for data analysis. The course will end with a statistics primer, showing how various statistical measures can be applied to pandas DataFrames. By the end of the course, students will be able to take tabular data, clean it,  manipulate it, and run basic inferential statistical analyses. This course should be taken before any of the other Applied Data Science with Python courses: Applied Plotting, Charting & Data Representation in Python, Applied Machine Learning in Python, Applied Text Mining in Python, Applied Social Ne…

Archive