Online Courses and Tutorials

Onlinecourses.tech provides you with the latest online courses information by assisting over 45,000 courses and 1 million students.

Learn programming, marketing, data science and more.

Get started today

Skip to main content

Теория отраслевых рынков (Industrial Organization)

About this course: Курс посвящен факторам, влияющим на размер компаний и структуру рынка. Почему на одних рынках преобладают малые компании, а на другом крупные? Продавцы принимают решения стратегически, однако их стимулы в свою очередь зависят от структуры рынка и от предшествующих решений. Как разделить между зоной предопределенных и свободных решений? Например, сговор как модель ценового поведения – предопределен структурой рынка или служит результатом свободного волеизъявления? Способны ли укоренившиеся на рынке продавцы препятствовать входу новичков, защищая свою рыночную долю и свою прибыль? Каковы лучшие способы предотвращения ценовых сговоров продавцов? Нужно ли (или по крайней мере желательно) запрещать или ограничивать слияния между крупными продавцами? Есть ли необходимость для государственной политики налагать ограничения на условия договоров между производителем и дистрибьютором? Как в этих условиях должна быть организована государственная политика (применение антимоноп…

Command Line Tools for Genomic Data Science

Command Line Tools for Genomic Data Science

About this course: Introduces to the commands that you need to manage and analyze directories, files, and large sets of genomic data. This is the fourth course in the Genomic Big Data Science Specialization from Johns Hopkins University.

Created by:  Johns Hopkins University

  • Liliana Florea, PhD
    Taught by:  Liliana Florea, PhD, Assistant Professor
    McKusick-Nathans Institute of Genetic Medicine
Basic Info
Course 5 of 8 in the Genomic Data Science Specialization.
Language
English
How To PassPass all graded assignments to complete the course.
User Ratings
Average User Rating 4.1See what learners said
Syllabus
WEEK 1
Basic Unix Commands
In this module, you will be introduced to command Line Tools for Genomic Data Science 
12 videos5 readings
  1. Reading: Welcome Message
  2. Reading: Syllabus
  3. Reading: VMBox Download & Instructions
  4. Reading: Pre-Course Survey
  5. Video: Basic Unix Commands 1: Content Representation
  6. Video: Basic Unix Commands 2: Files, Directories, Paths
  7. Video: Basic Unix Commands 3: File Naming
  8. Video: Basic Unix Commands 4: Content Creation
  9. Video: Basic Unix Commands 5: Accessing Content I
  10. Video: Basic Unix Commands 6: Accessing Content II
  11. Video: Basic Unix Commands 7: Redirecting Content
  12. Video: Basic Unix Commands 8: Querying Content
  13. Video: Basic Unix Commands 9: Comparing Content
  14. Video: Basic Unix Commands 10: Archiving Content
  15. Video: Basic Unix Commands 11: Practical Exercises I
  16. Video: Basic Unix Commands 12: Practical Exercises II
  17. Reading: Module 1 Exam Instructions **IMPORTANT**
Graded: Module 1 Quiz
Graded: Module 1 Exam
WEEK 2
Week Two
In this module, we'll be taking a look at Sequences and Genomic Features in a sequence of 10 presentations.  
11 videos1 reading
  1. Video: Sequences and Genomic Features 1: Molecular Bio Primer
  2. Video: Sequences and Genomic Features 2: Sequence Representation and Generation
  3. Video: Sequences and Genomic Features 3: Annotation
  4. Video: Sequences and Genomic Features 4.1: Alignment I
  5. Video: Sequences and Genomic Features 4.2: Alignment II
  6. Video: Sequences and Genomic Features 5: Recreating Sequences & Features
  7. Video: Sequences and Genomic Features 6: Genomic Feature Retrieval
  8. Video: Sequences and Genomic Features 7: SAMtools I
  9. Video: Sequences and Genomic Features 8: SAMtools II
  10. Video: Sequences and Genomic Features 9: BEDtools I
  11. Video: Sequences and Genomic Features 10: BEDtools II
  12. Reading: Module 2 Exam Instructions **IMPORTANT**
Graded: Module 2 Quiz
Graded: Module 2 Exam
WEEK 3
Week Three
In this module, we'll be going over Alignment and Sequence Variation in another sequence of 8 presentations. 
8 videos1 reading
  1. Video: Alignment & Sequence Variation 1: Overview
  2. Video: Alignment & Sequence Variation 2: Alignment & Variant Detection Tools
  3. Video: Alignment & Sequence Variation 3: VCF
  4. Video: Alignment & Sequence Variation 4: Bowtie
  5. Video: Alignment & Sequence Variation 5: BWA
  6. Video: Alignment & Sequence Variation 6: SAMtools (mpileup)
  7. Video: Alignment & Sequence Variation 7: BCFtools
  8. Video: Alignment & Sequence Variation 8: Variant Calling
  9. Reading: Module 3 Exam Instructions **IMPORTANT**
Graded: Module 3 Quiz
Graded: Module 3 Exam
WEEK 4
Week Four
In this module, we'll be going over Tools for Transcriptomics in a sequence of 6 presentations. 
8 videos2 readings
  1. Video: Tools for Transcriptomics 1: Overview
  2. Video: Tools for Transcriptomics 2: RNA-seq
  3. Video: Tools for Transcriptomics 3.1: Tophat I
  4. Video: Tools for Transcriptomics 3.2: Tophat II
  5. Video: Tools for Transcriptomics 4: Cufflinks
  6. Video: Tools for Transcriptomics 5: Cuffdiff
  7. Video: Tools for Transcriptomics 6.1: Integrated Genomics Viewer I
  8. Video: Tools for Transcriptomics 6.2: Integrated Genomics Viewer II
  9. Reading: Module 4 Exam Instructions **IMPORTANT**
  10. Reading: Post-Course Survey
Graded: Module 4 Quiz
Graded: Module 4 Exam
How It Works
Coursework
Coursework
Each course is like an interactive textbook, featuring pre-recorded videos, quizzes and projects.
Help from Your Peers
Help from Your Peers
Connect with thousands of other learners and debate ideas, discuss course material, and get help mastering concepts.
Certificates
Certificates
Earn official recognition for your work, and share your success with friends, colleagues, and employers.
Creators
Johns Hopkins University
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.

Comments

Popular posts from this blog

An Introduction to Interactive Programming in Python (Part 1)

About this course: This two-part course is designed to help students with very little or no computing background learn the basics of building simple interactive applications. Our language of choice, Python, is an easy-to learn, high-level computer language that is used in many of the computational courses offered on Coursera. To make learning Python easy, we have developed a new browser-based programming environment that makes developing interactive applications in Python simple. These applications will involve windows whose contents are graphical and respond to buttons, the keyboard and the mouse. In part 1 of this course, we will introduce the basic elements of programming (such as expressions, conditionals, and functions) and then use these elements to create simple interactive applications such as a digital stopwatch. Part 1 of this class will culminate in building a version of the classic arcade game "Pong".
Who is this class for: Recommended Background - A knowledge o…

Introduction to Data Science in Python

About this course: This course will introduce the learner to the basics of the python programming environment, including how to download and install python, expected fundamental python programming techniques, and how to find help with python programming questions. The course will also introduce data manipulation and cleaning techniques using the popular python pandas data science library and introduce the abstraction of the DataFrame as the central data structure for data analysis. The course will end with a statistics primer, showing how various statistical measures can be applied to pandas DataFrames. By the end of the course, students will be able to take tabular data, clean it,  manipulate it, and run basic inferential statistical analyses. This course should be taken before any of the other Applied Data Science with Python courses: Applied Plotting, Charting & Data Representation in Python, Applied Machine Learning in Python, Applied Text Mining in Python, Applied Social Ne…

Learn to Program and Analyze Data with Python

About This Specialization This Specialization builds on the success of the Python for Everybody course and will introduce fundamental programming concepts including data structures, networked application program interfaces, and databases, using the Python programming language. In the Capstone Project, you’ll use the technologies learned throughout the Specialization to design and create your own applications for data retrieval, processing, and visualization. Created by: 5 courses Follow the suggested order or choose your own. Projects Designed to help you practice and apply the skills you learn. Certificates Highlight your new skills on your resume or LinkedIn. Courses

Archive