Online Courses and Tutorials

Onlinecourses.tech provides you with the latest online courses information by assisting over 45,000 courses and 1 million students.

Learn programming, marketing, data science and more.

Get started today

Skip to main content

Featured Post

Machine Learning

Master machine learning fundamentals in four hands-on courses

About This Specialization This Specialization from leading researchers at the University of Washington introduces you to the exciting, high-demand field of Machine Learning. Through a series of practical case studies, you will gain applied experience in major areas of Machine Learning including Prediction, Classification, Clustering, and Information Retrieval. You will learn to analyze large and complex datasets, create systems that adapt and improve over time, and build intelligent applications that can make predictions from data. Created by: Industry Partners: 4 courses Follow the suggested order or choose your own. Projects Designed to help you practice and apply the skills you learn. Certificates Highlight your new skills on your resume or

Uso de técnicas estadísticas para el análisis de datos

Uso de técnicas estadísticas para el análisis de datos

About this course: Con frecuencia, en tu actividad profesional te enfrentas con la necesidad de analizar una gran cantidad de datos con el propósito de identificar si existe alguna relación entre ellos y de esta forma contar con información valiosa que te permita poder tomar una decisión. Los datos con los cuales se genera la información, además de requerir de un apropiado tratamiento, demandan también de una adecuada técnica para su análisis. En este curso serás capaz de conocer y utilizar distintas técnicas basadas en el análisis estadístico con un enfoque hacia la inteligencia de negocios (Business Intelligence), los cuales te permitirán crear modelos para mejorar la comprensión de cómo los datos se relacionan con la población subyacente, validar el modelo y emplear el análisis predictivo para evaluar escenarios factibles encaminados a orientar tus decisiones futuras. Al finalizar este curso habrás desarrollado la capacidad de utilizar distintas técnicas para la construcción y evaluación de modelos que con base en criterios de desempeño preestablecidos te permitirán aprovechar el valor de los datos. Agradecemos a Fundación Televisa por su participación en la producción de este curso; con lo cual colabora a inspirar y desarrollar el potencial de las personas, a través de su compromiso con la educación y la cultura.

Created by:   Tecnológico de Monterrey

Basic Info
Commitment4 semanas de estudio, 1-2 horas por semana
Language
Spanish
How To PassPass all graded assignments to complete the course.
User Ratings
Average User Rating 4.2See what learners said
Syllabus
WEEK 1
¿Cómo confiar en los datos?
Con frecuencia, en tu actividad profesional te enfrentas con la necesidad de analizar una gran cantidad de datos con el propósito de identificar si existe alguna relación entre ellos y de esta forma contar con información valiosa que te permita poder tomar una decisión. Los datos con los cuales se genera la información además de requerir de un apropiado tratamiento también demandan de una adecuada técnica para su análisis. En este curso serás capaz de conocer y utilizar distintas técnicas basadas en el análisis estadístico con un enfoque hacia la inteligencia de negocios (BI), los cuales te permitirán crear modelos para mejorar la comprensión de cómo los datos se relacionan con la población subyacente, validar el modelo y emplear el análisis predictivo para evaluar escenarios factibles encaminados a orientar tus decisiones futuras. Al finalizar este curso, habrás desarrollado la capacidad de utilizar distintas técnicas para la construcción y evaluación de modelos que con base en criterios de desempeño preestablecidos te permitirán aprovechar el valor de los datos.

6 videos12 readings
  1. Video: Bienvenida
  2. Video: Todos hacemos estimaciones
  3. Reading: Hacer Estimaciones Estadísticas
  4. Reading: Material Extra
  5. Video: ¿Cómo registrarse y crear una cuenta en Watson Analytics? (Exploración inicial)
  6. Reading: Metodología
  7. Reading: ¿Cómo hacer uso de un Peer-review?
  8. Reading: ¿Cómo utilizar los foros de discusión?
  9. Reading: Preguntas frecuentes
  10. Reading: Encuesta de inicio
  11. Video: Tipos de Estimaciones
  12. Reading: Ejercicios Resueltos
  13. Video: Intervalos de Confianza
  14. Reading: La estimación con intervalos de confianza
  15. Reading: Ejercicios Resueltos
  16. Video: ¿De qué depende el tamaño de la muestra?
  17. Reading: Muestreo como un requisito fundamental en las ciencias experimentales
  18. Reading: Ejercicios Resueltos
WEEK 2
¿Son válidas las suposiciones sobre mis datos?
En diversas problemáticas profesionales relacionadas con el análisis de un gran número de datos, seguramente te has encontrado en la disyuntiva de aceptar o rechazar una proposición y seguramente te gustaría tener más información para tomar tu decisión acertada; la forma de lograrlo es formular el problema a través de una prueba de hipótesis. ¿Cómo saber si una hipótesis estadística está correctamente planteada? ¿La verdad o falsedad de una hipótesis en particular se conoce con certeza sin tener que analizar a toda la población? Al finalizar este módulo serás capaz de desarrollar un procedimiento de prueba de hipótesis teniendo en cuenta el tipo de información contenida en la muestra aleatoria de la población de interés y evitar la posibilidad de llegar a una conclusión equivocada.

3 videos4 readings
  1. Video: Validación de las características de una población a través de una muestra
  2. Reading: Aplicación de las Pruebas de Hipótesis en la elección de compra de un equipo de telefonía celular
  3. Reading: Material Extra
  4. Video: Planteamiento de una prueba de hipótesis e identificación de errores Tipo I y Tipo II
  5. Reading: Material Extra
  6. Video: Pruebas de hipótesis de dos colas y de una cola
  7. Reading: Material Extra
Graded: Evaluación Sumativa
WEEK 3
Modelos de regresión
En este módulo conocerás la aplicación de uno de los modelos más populares para la toma de decisiones ya que te permite estimar el valor promedio de una variable dependiente tomando en cuenta una o más variables explicativas o bien hacer inferencias acerca de algún fenómeno del cual no conozcas aún su resultado. Los modelos de regresión pueden ser adaptados a un sinfín de aplicaciones ejecutivas. Hoy en día es mucho más fácil realizar el análisis de un gran volumen de datos gracias a que muchos paquetes estadísticos han desarrollado interfaces amigables con el usuario que le evitan realizar cálculos matemáticos y así el usuario centre su interés en el análisis. Finalmente, este módulo te ayudará a identificar elementos básicos que integran un modelo de regresión pero sobre todo te permitirán el valor de los datos para una adecuada tomar de decisiones dentro de tu organización.

4 videos6 readings
  1. Video: ¿Cómo definir y analizar la relación entre dos variables?
  2. Reading: Aplicación de la Regresión Lineal a un problema de pobreza
  3. Video: Errores más comunes en el uso de regresión y correlación
  4. Reading: Evaluación ciudadana del desempeño de la Gestión Pública Municipal
  5. Reading: Información de apoyo
  6. Reading: Material Extra
  7. Video: ¿Cómo realizar e interpretar un análisis de regresión Múltiple?
  8. Video: Tutorial: Watson Analytics
  9. Reading: La evolución de la industria automotriz en Japón
  10. Reading: Material Extra
Graded: Ejercicio de Análisis de Regresión Lineal Múltiple
Graded: Ejercicio de Análisis de Correlación
WEEK 4
Teoría de filas
Las "filas" son un aspecto típico de la vida moderna que nos encontramos continuamente en nuestras actividades cotidianas, en un banco, en un centro comercial, al abordar un avión, en un call center, etc. Este fenómeno se origina cuando tenemos la necesidad de compartir uno o más recursos, los cuales son utilizados para dar atención a un gran número de trabajadores. Las organizaciones frecuentemente deben tomar decisiones respecto a la capacidad de servicios que debe ofrecer. Sin embargo, muchas veces es imposible predecir con exactitud cuándo llegarán los clientes que demandan el servicio y/o cuánto tiempo será necesario para dar ese servicio; es por eso que esas decisiones implican dilemas que se deben de resolver con información escasa. Los modelos de filas no resuelven directamente el problema, pero generan información que se necesita para tomar las decisiones adecuadas prediciendo algunas características sobre la línea de espera: Al finalizar este módulo serás capaz de entender cómo se estructura un sistema de filas de espera y analizar el costo que implica para las organizaciones operar con recursos ociosos cuando no se analiza adecuadamente la información del número de clientes que demandan un servicio y la duración de éste.

3 videos7 readings
  1. Video: Integración y elementos de la teoría de filas
  2. Reading: ¿Cómo se analiza un sistema de filas de espera?
  3. Reading: Material Extra
  4. Video: Características Distintivas de un Modelo con Fuente Infinita
  5. Reading: Modelos de líneas de espera
  6. Reading: Material Extra
  7. Video: Características Distintivas de un Modelo con Fuente Finita
  8. Reading: El caso de la oficina de correos
  9. Reading: Material Extra
  10. Reading: Encuesta de cierrre
Graded: Quiz - Caso 1
Graded: Quiz - Caso 2
Graded: Quiz - Caso 3
How It Works
Coursework
Coursework
Each course is like an interactive textbook, featuring pre-recorded videos, quizzes and projects.
Help from Your Peers
Help from Your Peers
Connect with thousands of other learners and debate ideas, discuss course material, and get help mastering concepts.
Certificates
Certificates
Earn official recognition for your work, and share your success with friends, colleagues, and employers.
Creators
Tecnológico de Monterrey
Tecnológico de Monterrey es una de las instituciones educativas privadas sin fines de lucro más grande en Latinoamérica, con más de 98,000 estudiantes en preparatoria, licenciatura, y posgrado.


Comments

Popular posts from this blog

Big Data Hadoop Certification Training

Big Data Hadoop training will make you an expert in HDFS, MapReduce, Hbase, Hive, Pig, Yarn, Oozie, Flume and Sqoop using real-time use cases on Retail, Social Media, Aviation, Tourism, Finance domain. You will get Hadoop certification at the end of the course

About the Training
This Hadoop training is designed to make you a certified Big Data practitioner by providing you rich hands-on training on Hadoop ecosystem and best practices about HDFS, MapReduce, HBase, Hive, Pig, Oozie, Sqoop. This course is stepping stone to your Big Data journey and you will get the opportunity to work on a Big data Analytics project after selecting a data-set of your choice. You will get Hadoop certification after the project completion.

Training Objectives
The hadoop training is designed to help you become a top Hadoop developer. During this course, our expert instructors will train you to: Master the concepts of HDFS and MapReduce frameworkUnderstand Hadoop 2.x ArchitectureSetup Hadoop Cluster and write Co…

Hands-on Text Mining and Analytics by Yonsei University

About this course: This course provides an unique opportunity for you to learn key components of text mining and analytics aided by the real world datasets and the text mining toolkit written in Java. Hands-on experience in core text mining techniques including text preprocessing, sentiment analysis, and topic modeling help learners be trained to be a competent data scientists. Empowered by bringing lecture notes together with lab sessions based on the y-TextMiner toolkit developed for the class, learners will be able to develop interesting text mining applications.



LevelIntermediateLanguage English, Subtitles: Chinese (Simplified) How To PassPass all graded assignments to complete the course.
Syllabus

Learn to Program and Analyze Data with Python

About This Specialization This Specialization builds on the success of the Python for Everybody course and will introduce fundamental programming concepts including data structures, networked application program interfaces, and databases, using the Python programming language. In the Capstone Project, you’ll use the technologies learned throughout the Specialization to design and create your own applications for data retrieval, processing, and visualization. Created by: 5 courses Follow the suggested order or choose your own. Projects Designed to help you practice and apply the skills you learn. Certificates Highlight your new skills on your resume or LinkedIn. Courses

Deep Learning Specialization

Master Deep Learning, and Break into AI
About This Specialization If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming m…

Launch Your Career in Data Science

A nine-course introduction to data science, developed and taught by leading professors.
About This Specialization Ask the right questions, manipulate data sets, and create visualizations to communicate results. This Specialization covers the concepts and tools you'll need throughout the entire data science pipeline, from asking the right kinds of questions to making inferences and publishing results. In the final Capstone Project, you’ll apply the skills learned by building a data product using real-world data. At completion, students will have a portfolio demonstrating their mastery of the material. Created by: Industry Partners: 10 courses Follow the suggested order or choose your own. Projects Designed to help you practice and apply the skills you learn.

Master of Computer Science in Data Science

A flexible and affordable degree from one of the top Computer Science programs in the world, focused on one of the hottest fields of the new millennium

Enroll in the Master of Computer Science in Data Science (MCS-DS) and gain access to the computational and statistical knowledge needed to turn big data into meaningful insights. Build expertise in four core areas of computer science—data visualization, machine learning, data mining, and cloud computing—while learning key skills in statistics and information science. This completely online degree is an affordable gateway to one of the most lucrative and fastest growing careers of the new millennium. The MCS-DS is offered by CS @ ILLINOIS, a U.S. News & World Report top five CS graduate program, in collaboration with the University’s Statistics Department and top-ranked iSchool. Join our alumni network of entrepreneurs, educators, and technical visionaries, who have revolutionized the way people communicate, shop, conduct business,…

Machine Learning

Master machine learning fundamentals in four hands-on courses

About This Specialization This Specialization from leading researchers at the University of Washington introduces you to the exciting, high-demand field of Machine Learning. Through a series of practical case studies, you will gain applied experience in major areas of Machine Learning including Prediction, Classification, Clustering, and Information Retrieval. You will learn to analyze large and complex datasets, create systems that adapt and improve over time, and build intelligent applications that can make predictions from data. Created by: Industry Partners: 4 courses Follow the suggested order or choose your own. Projects Designed to help you practice and apply the skills you learn. Certificates Highlight your new skills on your resume or

An Introduction to Interactive Programming in Python (Part 1)

About this course: This two-part course is designed to help students with very little or no computing background learn the basics of building simple interactive applications. Our language of choice, Python, is an easy-to learn, high-level computer language that is used in many of the computational courses offered on Coursera. To make learning Python easy, we have developed a new browser-based programming environment that makes developing interactive applications in Python simple. These applications will involve windows whose contents are graphical and respond to buttons, the keyboard and the mouse. In part 1 of this course, we will introduce the basic elements of programming (such as expressions, conditionals, and functions) and then use these elements to create simple interactive applications such as a digital stopwatch. Part 1 of this class will culminate in building a version of the classic arcade game "Pong".
Who is this class for: Recommended Background - A knowledge o…

Программирование на Python

About this course: Python – простой, гибкий и невероятно популярный язык, который используется практически во всех областях современной разработки. С его помощью можно создавать веб-приложения, писать игры, заниматься анализом данных, автоматизировать задачи системного администрирования и многое другое. “Программирование на Python” читают разработчики, применяющие Python в проектах, которыми ежедневно пользуются миллионы людей. Курс покрывает все необходимые для ежедневной работы программиста темы, а также рассказывает про многие особенности языка, которые часто опускают при его изучении. В ходе курса вы изучите конструкции языка, типы и структуры данных, функции, научитесь применять объектно-ориентированное и функциональное программирование, узнаете про особенности реализации Python, научитесь писать асинхронный и многопоточный код. Помимо теории вас ждут практические задания, которые помогут проверить полученные знания и отточить навыки программирования на Python. После успешного о…

Front-End JavaScript Frameworks: Angular

About this course: This course concentrates mainly on Javascript based front-end frameworks, and in particular the Angular framework (Currently Ver. 4.x). This course will use Typescript for developing Angular application. Typescript features will be introduced in the context of Angular as part of the exercises. You will also get an introduction to the use of Angular Material and Angular Flex-Layout for responsive UI design. You will be introduced to various aspects of Angular including components, directives and services. You will learn about data binding, Angular router and its use for developing single-page applications. You will also learn about designing both template-driven forms and reactive forms. A quick introduction to Observables, reactive programming and RxJS in the context of Angular is included. You will then learn about Angular support for client-server communication and the use of REST API on the server side. You will use Restangular for communicating with a server sup…

Archive